YW Techrate1 o Techrate

"%

TechRate

AUDIT COMPANY

Smart Contract Security Audit

TechRate
June, 2021

https://twitter.com/BitennyOfficial
https://twitter.com/BitennyOfficial
https://techrate.org/

0o
<[>

Audit Details

Audited project
EverRiseFinance

Deployer address

0xc1169b9dF6613Ad50E60aE2D0ed6139Efb8e1D2b

Client contacts:

EverRiseFinance team

Blockchain

Binance Smart Chain

Project website:

https://leverrisecoin.com

https://everrisecoin.com/

Disclaimer

This is a limited report on our findings based on our analysis, in accordance with
good industry practice as at the date of this report, in relation to cybersecurity
vulnerabilities and issues in the framework and algorithms based on smart contracts,
the details of which are set out in this report. In order to get a full view of our
analysis, it is crucial for you to read the full report. While we have done our best in
conducting our analysis and producing this report, it is important to note that you
should not rely on this report and cannot claim against us on the basis of what it says
or doesn’t say, or how we produced it, and it is important for you to conduct your own
independent investigations before making any decisions. We go into more detail on
this in the below disclaimer below - please make sure to read it in full.

DISCLAIMER: By reading this report or any part of it, you agree to the terms of this
disclaimer. If you do not agree to the terms, then please immediately cease reading
this report, and delete and destroy any and all copies of this report downloaded
and/or printed by you. This report is provided for information purposes only and on a
non-reliance basis, and does not constitute investment advice. No one shall have any
right to rely on the report or its contents, and TechRate and its affiliates (including
holding companies, shareholders, subsidiaries, employees, directors, officers and
other representatives) (TechRate) owe no duty of care towards you or any other
person, nor does TechRate make any warranty or representation to any person on
the accuracy or completeness of the report. The report is provided "as is", without
any conditions, warranties or other terms of any kind except as set out in this
disclaimer, and TechRate hereby excludes all representations, warranties,
conditions and other terms (including, without limitation, the warranties implied by
law of satisfactory quality, fithess for purpose and the use of reasonable care and
skill) which, but for this clause, might have effect in relation to the report. Except and
only to the extent that it is prohibited by law, TechRate hereby excludes all liability
and responsibility, and neither you nor any other person shall have any claim against
TechRate, for any amount or kind of loss or damage that may result to you or any
other person (including without limitation, any direct, indirect, special, punitive,
consequential or pure economic loss or damages, or any loss of income, profits,
goodwill, data, contracts, use of money, or business interruption, and whether in
delict, tort (including without limitation negligence), contract, breach of statutory
duty, misrepresentation (whether innocent or negligent) or otherwise under any
claim of any nature whatsoever in any jurisdiction) in any way arising from or
connected with this report and the use, inability to use or the results of use of this
report, and any reliance on this report.

The analysis of the security is purely based on the smart contracts alone. No
applications or operations were reviewed for security. No product code has been
reviewed.

Background

TechRate was commissioned by EverRiseFinance to perform an audit
of smart contracts:
https://bscscan.com/address/0Oxc7d43f2b51f44f09fbb8a691a0451e8
ffcf36c0a#code

The purpose of the audit was to achieve the following:

e Ensure that the smart contract functions as intended.
e Identify potential security issues with the smart contract.
The information in this report should be used to understand the risk exposure of the

smart contract, and as a guide to improve the security posture of the smart contract
by remediating the issues that were identified.

https://bscscan.com/address/0xc7d43f2b51f44f09fbb8a691a0451e8ffcf36c0a#code
https://bscscan.com/address/0xc7d43f2b51f44f09fbb8a691a0451e8ffcf36c0a#code

Contracts Details

Token contract details for 14.06.2021

Contract name

Contract address

Total supply

Token ticker

Decimals

Token holders

Transactions count

Top 100 holders dominance

Liquidity fee

Tax fee

Total fees

Uniswap V2 pair

Contract deployer address

Contract’s current owner
address

EverRiseFinance

0xC7D43F2B51F44f09fBB8a691a0451E8FFCF36¢c0a

1,000,000,000,000,000

RISE

100.00%

0x93d94fcb0dcc8a88257b2d2eec7a2615ebedb542

0xc1169b9dF6613Ad50E60aE2D0ed6139Efb8e1D2b

0xc1169b9df6613ad50e60ae2d0ed6139efb8e1d2b

EverRiseFinance Token
Distribution

) The top 100 holders collectively own 100.00% (1,000,000,000,000,000.00 Tokens) of EverRise ./ Token Total Supply: 1,000,000,000,000,000.00 Token | Total Token Holders: 1

EverRise Top 100 Token Holders

Source: BscScan.com

OTHER ACCOUNTS

0xc1169b9df6613ad50e60ae2d0ed6139efb8eld2b

(A total of 1,000,000,000,000,000.00 tokens held by the top 100 accounts from the total supply of 1,000,000,000,000,000.00 token)

EverRiseFinance Contract
Interaction Details

Time Series: Token Contract Overview Sat 12, Jun 2021 - Sat 12, Jun 2021

Token Contract Oxc7d43f2b51f44f09fbbB8a691a045 1e8ffcf36c0a (EverRise)
Source: BscScan.com

Zoom All From | Jun 11,2021 | To Jun 12,2021
oT 1
900T 18
R
3
3
g
]
8 600T L5 5
E s
< a
&
g
5
3007 12 7
0 9
12. jun
i

Transfer Amount -e- Transfers Count Unique Receivers Unique Senders -i~ Total Uniques

EverRiseFinance Top 10 Token
Holders

ddddddd

1,000,000,000,000,000 100.0000%

Contract functions details

[Int]
[Int]

[Int]
[Ext]
[Ext]
[Ext] #
[Ext]
[Ext] #
[Ext] #

[Lib]
[Int]
[Int]
[Int]
[Int]
[Int]
[Int]
[Int]
[Int]

[Lib]
[Int]
[Int] #
[Int] #
[Int] #
[Int] #
[Int] #
[Prv] #

(Context)
[Pub] <Constructor> #
[Pub]
[Pub] #

[Pub] #

[Pub]
[Pub]
[Pub] #

[Pub] #

[Int]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext] #

[Ext] #
[Ext] #

[Int]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext] #
[Ext] #
[Ext] #
[Ext]
[Ext]
[Ext]
[Ext] #
[Ext]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext]
[Ext] #

o

[Int]
[Ext]
[Ext]
[Ext] #
[Ext] ($)
[Ext] #
[Ext] #
[Ext] #
[Ext] #
[Ext] #
[Ext] #
[Ext] ($)
[Ext] #
[Ext] #
[Ext] ($)
[Ext]
[Ext]
[Ext]
[Ext]
[Ext]

[Int] (lUniswapV2Router01)
[Ext]
[Ext]

- [Ext] swapExactTokensForTokensSupportingFeeOnTransferTokens #
- [Ext] swapExactETHForTokensSupportingFeeOnTransferTokens ($)
- [Ext]) swapExactTokensForETHSupportingFeeOnTransferTokens #

+ EverRise (Context, IERC20, Ownable)
- [Pub] <Constructor> #
- [Pub] name
- [Pub] symbol
- [Pub] decimals
- [Pub] totalSupply
- [Pub] balanceOf
- [Pub] transfer #
- [Pub] allowance
- [Pub] approve #
- [Pub] transferFrom #
- [Pub] increaseAllowance #
- [Pub] decreaseAllowance #
- [Pub] isExcludedFromReward
- [Pub] totalFees
- [Pub] minimumTokensBeforeSwapAmount
- [Pub] buyBackUpperLimitAmount
- [Pub] deliver #
- [Pub] reflectionFromToken
- [Pub] tokenFromReflection
- [Pub] excludeFromReward #
- modifiers: onlyOwner
- [Ext] includelnReward #
- modifiers: onlyOwner
-[Prv] approve #
- [Prv] transfer #
- [Prv] swapTokens #
- modifiers: lockTheSwap
- [Prv] buyBackTokens #
- modifiers: lockTheSwap
- [Prv] swapTokensForEth #
- [Prv] swapETHForTokens #
- [Prv] addLiquidity #
- [Prv] tokenTransfer #
- [Prv] _transferStandard #
- [Prv] _transferToExcluded #
- [Prv] _transferFromExcluded #
- [Prv] _transferBothExcluded #
-[Prv] reflectFec #
-[Prv] getValues
-[Prv] getTValues
- [Prv] _getRValues
-[Prv] getRate
- [Prv] _getCurrentSupply
- [Prv] takeliquidity #
- [Prv] calculateTaxFee
- [Prv] calculateLiquidityFee
- [Prv] removeAllFee #
- [Prv] restoreAllFec #
- [Pub] isExcludedFromFee
- [Pub] excludeFromFee #

- modifiers: onlyOwner
- [Pub] includelnFee #
- modifiers: onlyOwner
- [Ext] setTaxFeePercent #
- modifiers: onlyOwner
- [Ext] setLiquidityFeePercent #
- modifiers: onlyOwner
- [Ext] setMaxTxAmount #
- modifiers: onlyOwner
- [Ext] setMarketingDivisor #
- modifiers: onlyOwner
- [Ext] setNumTokensSellToAddToLiquidity #
- modifiers: onlyOwner
- [Ext] setBuybackUpperLimit #
- modifiers: onlyOwner
- [Ext] setMarketingAddress #
- modifiers: onlyOwner
- [Pub] setSwapAndLiquifyEnabled #
- modifiers: onlyOwner
- [Pub] setBuyBackEnabled #
- modifiers: onlyOwner
- [Ext] prepareForPreSale #
- modifiers: onlyOwner
- [Ext] afterPreSale #
- modifiers: onlyOwner
- [Prv] transferToAddressETH #
- [Ext] <Fallback> ($)

($) = payable function
= non-constant function

Issues Checking Status

Issue description

Checking status

© EE N B

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

Compiler errors.

Race conditions and Reentrancy. Cross-function race

conditions.

Possible delays in data delivery.
Oracle calls.

Front running.

Timestamp dependence.

Integer Overflow and Underflow.
DoS with Revert.

DoS with block gas limit.
Methods execution permissions.
Economy model of the contract.
The impact of the exchange rate on the logic.
Private user data leaks.
Malicious Event log.

Scoping and Declarations.
Uninitialized storage pointers.
Arithmetic accuracy.

Design Logic.

Cross-function race conditions.

Safe Open Zeppelin contracts implementation and
usage.

Fallback function security.

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Low issues

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Security Issues

High Severity Issues

No high severity issues found.

Medium Severity Issues

No medium severity issues found.

@ Low Severity Issues
1. Out of gas

Issue:

® The function includelnReward() uses the loop to find and remove
addresses from the _excluded list. Function will be aborted with
OUT_OF_GAS exception if there will be a long excluded addresses
list.

function includeInReward(address account®) external onlyOwner() {
require(:isEXCludeé[aCCOunt 1, "Account is already excluded");
for (ui i E. ?igggq.length; i++) {
== accountt®) {

:éé.length - 1]1;

= false;

e The function _getCurrentSupply also uses the loop for evaluating
total supply. It also could be aborted with OUT_OF_GAS exception if
there will be a long excluded addresses list.

unction _getCurrentSupply() private view returns (uint256, uint256) {
uint256 rSupply = ;rTotaf;
uint256 tSupply
for (uint256 i =

) return (_r

tTotal);
rSupply = rSupply.sub(_r0
tSupply = tSupply.sub(_tOwned[_ _excluded[i]]);

Y b

}
if (rSupply < ;rTotaI}div(;tTotaI)) return (;rTotat, ;tTotal)
return (rSupply, tSupply);

Recommendation:
Check that the excluded array length is not too big.

Owner privileges (In the period when the owner is not
renounced)

« Owner can change tax and liquidity fees.

setTaxFeePercent(uint256 taxFeet) onlyOwner() {
= taxFeet;

ityFeePercent(uint256 liquidityFeet) onlyOwner() {
= liquidityFeet;

setMaxTxAmount(uint256 maxTxAmountt) onlyOwner() {
_maxTxAmount = maxTxAmount® ;

e Owner can exclude from the fee.

excludeFromFee(address account®) public onlyOwner {
_isExcludedFromFee[account] = true;

« Owner can change marketingDivisor.

setMarketingDivisor(uint256 divisort) onlyOwner() {
= divisort;

« Owner can change minimum number of tokens to add to liquidity.

setNumTokensSellToAddToLiquidity(uint256 _minimumTokensBeforeSwap) onlyOwner() {

minimumTokensBeforeSwap = _minimumTokensBeforeSwapt ;

« Owner can change buyBackUpperLimit.

setBuybackUpperLimit(uint256 buyBackLimit®) onlyOwner() {

= buyBackLimitf® * 10%x18;

« Owner can change marketing address.

setMarketingAddress(address _marketingAddresst) onlyOwner() {
(_marketingAddresst);

« Owner can enable and disable buyBack.

setBuyBackEnabled(bool _enabledt) onlyOwner {
| = _enabled®;
emit BuyBackEnabledUpdated(_enabledt);

« Owner can enable before and after presale modes.

prepareForPreSale() onlyOwner {
setSwapAndLiquifyEnabled(};

:T?ﬁIE&T?“" = 1000000000 x 10%%6 * 10%k9;

afterPreSale() onlyOwner {
setSwapAndLiquifyEnabled(A

:mﬂﬁjﬁﬁmng = 3000000 x 10%xb * 10%%9;

« Owner can lock and unlock. By the way, using these functions the
owner could retake privileges even after the ownership was
renounced.

(K< (I % |) € 01 ‘,: [
function lock(uint256 time) public virtual onlyOwner {

_previousOwner = _owner;

_owner = address(0);

_lockTime = now + time;

emit OwnershipTransferred(_owner, address(0));

function unlock() public virtual {
require(_previousOwner == msg.sender, "You don't have permission to unlock");
require(now > _lockTime , "Contract is locked until 7 days");
emit OwnershipTransferred(_owner, _previousOwner);
_owner = _previousOwner;

Conclusion

Smart contracts contain low severity issues! Liquidity pair contract’s
security is not checked due to out of scope. One third of the liquidity

goes to marketing address.

Liquidity locking details NOT provided by the team.

TechRate note:

Please check the disclaimer above and note, the audit makes no
statements or warranties on business model, investment
attractiveness or code sustainability. The report is provided for the
only contract mentioned in the report and does not include any

other potential contracts deployed by Owner.

YW Techrate1 O Techrate <A Techrate audits

	Smart Contract Security Audit
	Disclaimer
	Contract functions details
	Security Issues
	High Severity Issues
	Medium Severity Issues
	Low Severity Issues

